Гипофизотропные гормоны ч.2

Соматостатин. При попытках выделить из гипоталамуса овец соматолиберин в лаборатории, руководимой Р. Гелемином, в 1973 г. был получен полипептид, который угнетал высвобождение гормона роста из культуры гипофиза крыс. В том же году была расшифрована структура соматостатина с такой последовательностью аминокислотньгх остатков: Ala-Gly-CysrLys-Asn-Phe-Phe-Tip-Lys-Thr-Phe-Thr-Ser-Cys. Таким образом, соматостатин является тетрадекапеп-тидом, в 3-м и 14-м положениях содержит два цистеиновых остатка и существует в окисленной и восстановленной формах, причем каждая из них обладает одинаковой биологической активностью. Циклическая форма, по некоторым данным, оказывает более сильное ингибирующее действие на секрецию СТГ и инсулина.
Доказано, что в тканях соматостатин присутствует в нескольких формах и, в частности, в форме белка, химическая структура которого включает 28 аминокислотных остатков со следующей последовательностью: Ser-Ala-Asn-Ser-Asn-Pro-Ala-Met-Ala-Pro-Arg-Glu-Arg-Lys-Ala-Gly-Cys-Lys-Asn-Phe-Phe-Trp-Lys-Thr-Phe-Thr-Ser-Cys. Молекулярная масса соматостатина-14 равна 1638, 12 Da, а соматостатина-28 — 3149 Da (дальтон).


Ген, ответственный за синтез соматостатина, локализуется на 3-й хромосоме.

Обе формы соматостатина являются биологически активными. Цитоиммунохимическими исследованиями показано, что соматостатин-14 выявляется в основном в ЦНС, тогда как сомато-статин-28 — в желудочно-кишечном тракте, преимущественно в толстом кишечнике. При использовании иммунолюминесцентного метода было обнаружено, что соматостатин локализуется в нервных окончаниях наружного слоя срединного возвышения и в вентромедиальном ядре, которое считается основным гипоталамическим образованием, осуществляющим регуляцию секреции СТТ. Кроме того, соматостатин выявляется и в области дугообразного ядра, где он присутствует как в клетках и нервных окончаниях, так и в аксонах, проходящих через это ядро. Основные сплетения соматостатинсодержащих нервных волокон располагаются в вентромедиальном и дугообразном ядрах и далее распространяются каудально в вентральные сосцевидные ядра. Установлено также, что нейроны, секретирующие соматостатин, выявляются в паравентрикулярных ядрах. Аксоны этих клеток распространяются латерально и вентрально по направлению к перекресту зрительных нервов, а далее идут каудально к области срединного возвышения.


Приведенные выше дугообразное и вентромедиальное ядра получают соматостатинсодержащие нервные волокна из других источников. В частности, нервные окончания, содержащие соматостатин, обнаружены в вентромедиально-дугообразном комплексе, супрахиазматических ядрах и в вентральных премамиллярных ядрах. Эти данные свидетельствуют о том, что соматостатин выполняет функцию не только гормона, но и нейропередатчика или нейромодулятора. Такая возможность подтверждается тем, что соматостатинсодержащие клетки обнаружены в спинальных ганглиях, а нервные волокна, содержащие соматостатин, выявляются в дорсальных рогах спинного мозга, периферических симпатических нейронах, превертебральных ганглиях, нижнем и верхнем мезентериальных узлах. В этой связи интерес представляют работы последних лет, в которых показано, что соматостатин вовлечен в такие важные функции мозга, как сознание, память, двигательная активность, вегетативная и эндокринная регуляция. Доказано, что соматостатин и его мРНК экспрессируются в полосатом теле мозга, которое вовлечено в двигательную активность и поведенческие реакции организма.


Ишемия этих участков мозга увеличивает экспрессию гена соматостатина. И наоборот, уровень соматостатиновой мРНК снижается после применения гало-перидола, антипсихотических препаратов, которые способствуют развитию экстрапирамидных симптомов. Авторы справедливо считают, что выявляемая повышенная экспрессия гена соматостатина при патологических состояниях имеет прямое отношение к появлению при этом различных клиничесих симптомов. Кроме того, перерыв дофаминергической иннервации также приводит к повышению экспрессии гена соматостатина в этой области, что является дополнительным подтверждением участия соматостатина в нарушении двигательных реакций, столь характерных для болезни Паркинсона.

Соматостатин оказывает свое биологическое влияние через комплексирование с рецепторами, расположенными на мембранах клеток. В настоящее время различают 5 типов рецепторов к соматостатину, которые неодинаково экспрессируются как в тканях различных областей ЦНС, так и в периферических тканях. Все типы рецепторов экспрессируются в передней доле гипофиза и в гипоталамусе, что указывает на участие этих областей в модуляции секреции гормона роста.Доказано, что сахарный диабет и депривация пищи приводят к уменьшению мРНК рецепторов к соматостатину 1,2 и 3-го типа в гипофизе примерно на 80% по сравнению с контрольными животными, получающими нормальное питание.


При этом количество мРНК рецепторов 4-го и 5-го типов остается без изменений. Также не изменяется количество мРНК всех видов рецепторов в гипоталамусе. В гипофизе диабетических крыс сниженное количество мРНК рецепторов 1,2 и 3-го типов на 50—80% по сравнению с контрольными животными, восстанавливается при проведении инсулинотерапии, но только в отношении мРНК рецепторов 1-го типа. Экспрессия мРНК рецепторов 4-го типа в гипофизе и всех 4 типов в гипоталамусе при этом остается без изменений. Экспрессия же рецепторов 5-го типа в гипофизе, сниженная при диабете на 70% и 30% , в гипоталамусе восстанавливается при введении инсулина. Эти исследования четко показывают взаимосвязь количества рецепторов к соматостатину с состоянием обмена веществ. Исходя из структуры и фармакологических свойств рецепторы к соматостатину разделяют на 2 группы (два семейства): к первой группе относятся рецепторы 2, 3 и 5-го типа, которые раньше по фармакологическим характеристикам относили к соматостатиновым рецепторам 1-го типа; ко второй группе относятся рецепторы 1-го и 4-го типов, ранее называемые соматостатиновыми рецепторами 2-го типа.


Таким образом, исследования показали, что соматостатиновые рецепторы относятся к группе с 7 трансмембранными фрагментами и кодируются генами, расположенными в различных хромосомах. Ген рецептора 1-го типа локализуется в 14-й; 2-го типа — в 17-й; 3-го типа— в 22-й; 4тго типа — в 20-й и 5-го типа — в 16-й хромосоме. Рецепторы 1—4-го типов практически эквивалентно комплексируются с соматостатином-14 и соматостатином-28, тогда как рецепторы 5-го типа почти селективно комплексируются с соматостатином, имеющим структуру, включающую 28 аминокислот. Установлена различная аффинность рецепторов к соматостатину и его аналогам. Так, аналог соматостатина октреотид (SMS 201-995) взаимодействует с рецепторами 2-го и 3-го типов, очень незначительно с рецепторами 5-го типа. Другой аналог соматостатина — соматулин (ИМ 23014) комплексируется с рецепторами 2-го и 5-го типов и лишь незначительно с рецепторами 3-го типа. Изучая экспрессию соматостатиновых рецепторов 1-го и 2-го типов в гипоталамусе, установлена различная их концентрация в ядрах гипоталамуса (преоптической области, супрахиазматическом ядре, дугообразном ядре, паравентрикулярном и перивентрикулярном ядрах, вентральных премамиллярных ядрах), что указывает на участие этих рецепторов в центральной регуляции секреции соматолиберина и соматостатина.

Механизмы передачи гормонального сигнала в соматостатиновых рецепторах интенсивно изучаются в последние годы. Доказано, что соматостатиновые рецепторы в экзокринной части поджелудочной железы осуществляют трансдукцию гормонального сигнала через активирование двух подтипов G-белка: Gial и Gia3. Соматостатиновые рецепторы экзокринной части поджелудочной железы относятся к соматостатиновым рецепторам 2-го типа, тогда как в гипофизарных клетках выявляются соматостатиновые рецепторы 1 -го и 2-го типов. Взаимодействие соматостатина с клетками гипофиза ведет к увеличению количества соматостатиновых рецепторов независимо от количества вновь синтезированного белка.
Работы по идентификации соматостатиновых рецепторов в различных тканях организма неожиданно привели к разработке методов ранней диагностики опухолей, секретирующих различные гормоны. Доказано, что рецепторы к соматостатину присутствуют в большинстве опухолей, секретирующих гормоны. Для визуализации рецепторов к соматостатину применяют октреотид, меченный радиоактивным индием. С помощью этого препарата визуализируются в 70—100% опухоли, секретирующие гормон роста, ТТГ, опухоли островков поджелудочной железы, карциноидные опухоли, параганглиомы, феохромоцитомы, медулярный рак щитовидной железы, мелкоклеточный рак легких. Кроме того, менингиомы, рак почек, рак молочной железы, злокачественные лимфомы часто имеют также рецепторы к соматостатину, что позволяет проводить их диагностику с помощью различных сканирующих процедур. Причем исследования, проведенные с использованием соматостатина-14, соматостатина-28 и октреотида, показали различия в количестве связывающих мест к перечисленным гормонам, что указывает на определенные различия в соматостатиновых рецепторах. Помимо этого, для выявления первичной опухоли или ее метастазов во время операции применяется октреотид (аналог соматостатина), меченный радиоактивным йодом.

Соматостатин оказывает прямое действие на ЦНС. Он вызывает различные поведенческие, двигательные и электрофизиологические изменения при введении его в гиппокамп, кору головного мозга.
Показано, что соматостатин выявляется в d-клетках желудочно-кишечного тракта и поджелудочной железы. В желудке эти клетки располагаются в собственном слое слизистой оболочки антрального отдела, преимущественно в непосредственной близости от клеток, продуцирующих гастрин, что подтверждает влияние соматостатина на секрецию этого гормона. В кишечнике а-клетки выявляются в основном в собственном слое слизистой оболочки; незначительное их количество обнаруживается в криптах. В поджелудочной железе соматостатинсодержащие клетки локализуются по периферии панкреатических островков, располагаясь между а- и b-клетками.

Своеобразие распределения d-клеток, а именно их разбросанность среди других эндокринных клеток желудочно-кишечного тракта и поджелудочной железы, представляет морфологическую основу для высвобождения и местного действия гормона на соседние клетки-мишени. В этом отношении соматостатин может рассматриваться как аналог других местных гормонов, к которым относятся, в частности, гистамин и серотонин. Кроме того, соматостатин, выявляющийся не только в клетках, где он секретируется, но и в нервных волокнах, в том числе желудочно-кишечного тракта, осуществляет свое действие и через нейрокринные механизмы, т. е. путем высвобождения из нервных окончаний.
Соматостатин оказывает влияние на моторную и секреторную функции пищеварительной системы, ее кровообращение и кишечную абсорбцию. Он задерживает эвакуацию желудочного содержимого, угнетая высвобождение мотилина — гормона, стимулирующего моторику желудочно-кишечного тракта, снижает сократительную активность желчного пузыря путем торможения действия холецистокинина. У накормленных животных соматостатин тормозит высвобождение гастрина и холецистокинина, наб¬людаемое после приема пищи.
Соматостатин угнетает секрецию поджелудочной железой инсулина и глюкагона Это действие распространяется на обе фазы высвобождения инсулина, вызванного глюкозой, толбутамидом, глюкагоном или секретином. Из-за короткого периода полураспада соматостатина (около 4 мин) его тормозящее влияние заканчивается вскоре после прекращения инфузии. Угнетая секрецию глюкагона, соматостатин понижает концентрацию глюкозы в периферической крови путем уменьшения выхода ее из печени в воротную вену. Однако после внутривенной нагрузки глюкозой или длительного введения соматостатина вместо ожидаемого снижения уровня глюкозы в крови наблюдается гипергликемия, что объясняется одновременным значительным угнетением секреции инсулина.

В настоящее время доказаны следующие влияния соматостатина:
1) ингибирование секреции гастрина, секретина, ТТГ, СТГ, инсу¬ина, глюкагона, мотилина, глицентина, ВИП, ренина;
2) угнетение секреции соляной кислоты и пепсина желудком, уменьшение моторики желудка, ингибирование секреции бикарбонатов и ферментов поджелудочной железой, снижение абсорбции в кишечнике, уменьшение кровотока на всем протяжении желудочно-кишечного тракта, снижение секреции и транспорта желчи.

В связи с тормозящим влиянием соматостатина на секрецию СТГ, глюкагона и инсулина высказывались предположения о возможности его использования в лечении сахарного диабета. Оказалось, однако, что соматостатин, угнетая секрецию инсулина, приводит к развитию еще более выраженной инсулиновой недостаточности. Большие надежды возлагались на получение аналогов соматостатина, обладающих исключительным влиянием на ингибирование секреции СТГ и глюкагона и интактным в отношении влияния на секреции инсулина. Полученный аналог соматостатина октреотид обладает рядом преимуществ по сравнению с соматостатином: имеет длительный период полураспада, что позволяет применять его 2—3 раза в сутки; ингибирует патологическую секрецию многих гормонов и может применяться при различных патологических состояниях, включая випому, карциноидный синдром, низидиоб-ластоз, гастриному, соматотропиному (акромегалию). Кроме того, опубликованы данные о применении октреотида при тиреотропи-номе, желудочном кровотечении, перфорирующей язве желудка, глюкагономе, диарее как у детей, так и у взрослых.
Гормон роста усиливает синтез и увеличивает содержание соматостатина в гипоталамусе. Сниженное количество соматостатина в гипоталамусе гипофизэктомированных крыс восстанавли¬валось до нормы под влиянием экзогенного СТГ. Это указывает на существование положительного механизма обратной связи между СТГ и соматостатином и регуляции секреции СТГ по принципу «короткой» обратной связи.

Тиролиберин. Установлено, что высвобождение ТТГ из передней доли гипофиза регулируется гипоталамусом посредством тиротропин-рилизинг-гормона, или тиролиберина. Кстати, именно тиролиберин был первым из гипофизотропных гормонов с установленной химической структурой, которая включает следующую последовательность аминокислот: pGlu-His-Gly-NH2. Вскоре после установления структуры тиролиберина он был синтезирован, причем биологическая активность натурального и синтетического препарата оказалась идентичной.
Синтез тиролиберина осуществляется посредством посттрансляционного отщепления последнего от большой молекулы предшественника. Исследователи определили структуру человеческой геномной ДНК и гипоталамической кДНК, кодирующей человеческий препротиролиберин. В то же время идентифицировали 3 новых пептида, производных протиролиберина. Установлено, что ген, ответственный за синтез препротиролиберина, локализуется на 3-й хромосоме. Установлено, что экспрессия гена тиролиберина наблюдается как в нормальной, так и в аденоматозной тканях гипофиза. Молекула препротиролиберина человека включает 242 аминокислотных остатка, а аналогичная молекула крысиного препротиролиберина — 255 аминокислотных остатков. Показано, что в синтезе тиролиберина принимает участие тиролиберинсинтетаза, требующая присутствия АТФ и ионов магния. Она была обнаружена в различных областях мозга. Тироксин непосредственно влияет на активность тиролиберинсинтетазы, и синтез тиролиберина осуществляется по принципу отрицательной обратной связи. Цитоиммунохимические исследования показали, что тиролиберин широко представлен в ЦНС и желудочно-кишечном тракте. Нейроны, секретирующие тиролиберин, выявляются в медиальной и парвоцеллюлярной областях паравентрикулярного ядра. Второй по интенсивности содержания тиролиберина является область супрахиазматического преоптического ядра, дорзомедиального ядра и базолатерального гипоталамуса. Аксоны, содержащие тиролиберин, выявляются в дорзомедиальном ядре, медиальной области паравентрикулярного ядра, но наибольшая их концентрация отмечается в области срединного возвышения. Количество тиролиберина, локализованного в гипоталамусе, составляет всего 30—32% от его содержания в мозге. Остальная часть тиролиберина (около 70%) приходится на внегипоталамические области мозга (передний мозг, заднюю часть промежуточного мозга, задний мозг, двигательные нейроны спинного мозга, ядра черепных нервов; нейрогипофиз, эпифиз).

Тиролиберин, выявляемый в различных частях ЦНС, не является продуктом секреции клеток гипоталамуса. Помимо своей гилофизарной функции, тиролиберин в других областях ЦНС выполняет роль нейропередатчика или нейромодулятора и оказывает в основном стимулирующее влияние. Это проявляется повышением спонтанной двигательной активности, артериального давления, увеличением времени судорожного периода и летальности от стрихнина, увеличением двигательной активности у животных после введения им морфия. Тиролиберин потенциирует возбуждающее действие ацетилхолина на нейроны коры головного мозга, вызывает анорексию, повышает высвобождение норадреналина и дофамина из синаптосом и ускоряет период обмена норадреналина. Кроме того, он участвует в терморегуляции и вызывает гипертермию при введении его в желудочки мозга. Показано, что тиролиберин широко представлен в поджелудочной железе и желудочно-кишечном тракте. В антральном отделе желудка плода человека он выявляется в клетках, содержащих гастрин. Однако у взрослого человека эта колокализация двух гормонов не подтверждается. В противоположность этому тиролиберин выявляется в поджелудочной железе как взрослого, так и плода. При этом в эмбриональном периоде содержание тиролиберина в поджелудочной железе значительно выше. Причем в поджелудочной железе, так же как и в желудке, тиролиберин колокализуется в одной клетке, а именно в b-клетке, содержащей инсулин. У человека назначение тиролиберина снижает скорость абсорбции глюкозы и ксилозы из кишечника. Тиролиберин выявляется также в мочеполовых органах (простате, семенных пузырьках и др.). Его наличие выявлено в сетчатой оболочке, плаценте, экстрактах различных опухолей человека. Однако убедительных данных о биологической значимости тиролиберина в этих органах пока нет. Видимо, он оказывает паракринное или нейротрансмиттерное влияние.
Механизм действия тиролиберина включает его взаимодействие со специфическими мембранными рецепторами клеток передней доли гипофиза, ответственных за секрецию ТТГ. Длительное время считалось, что в результате гормонально-рецепторного взаимодействия происходит активация аденилатциклазы с последующим образованием цАМФ, а последний стимулирует секрецию ТТГ. Как показано в последнее время, повышения цАМФ еще недостаточно для стимуляции секреции ТТГ. Действие тиролиберина опосредуется, главным образом, через вторичные мессенджеры фосфатидилинозитоловой системы и последующим фосфорилированием протеинкиназ. Высвобождение ТТГ стимулируется избытком ионов калия и требует обязательного присутствия ионов кальция. Наблюдаемое после взаимодействия тиролиберина с рецепторами повышение внутриклеточного кальция носит двухфазный характер: быстрое повышение внутриклеточного кальция, затем продолжительное плато и второй пик повышения соржания внутриклеточного свободного кальция. Первый пик повышения кальция связан с его высвобождением из внутриклеточного депо под влиянием вторичного мессенджера — инозитол-трифосфата. Открытие кальциевых вольтажзависимых каналов и повышение скорости вхождения кальция из внеклеточной жидкости приводит ко второму пику повышения концентрации внутриклеточного кальция. Эти и другие авторы справедливо считают, что повышение цАМФ, наблюдаемое после воздействия тиреолиберина, является не первичным, а вторичным феноменом, следствием стимулирующего влияния на образование цАМФ вторичных мессенджеров фосфатидилинозитоловой системы. Однако в различных областях ЦНС тиролиберин может первично опосредовать свое действие через образование цАМФ или через инози-толтрифосфат.

Количество рецепторов к тиреолиберину и их способность к взаимодействию модулируются циркулирующим уровнем тироидных гормонов. Так, у гипотиреоидных животных количество рецепторов к тиролиберину увеличивается почти в 2 раза по сравнению с контролем. Заместительная терапия тироидными гормонами приводит к уменьшению повышенного количества рецепторов у этих животных. Помимо тиреоидных гормонов, на процессы взаимодействия тиролиберина с рецепторами большое влияние оказывают простагландины (ПГЕ1).
Тиролиберин разрушается в мембранах органов-мишеней, плазме или сыворотке крови под влиянием двух ферментов — ти-роглутамил аминопептидазы 1-го и 2-го типов (последняя находится в сыворотке крови, а первая связана с мембранами клеток) через трансформацию нескольких соединений. Вначале он трансформируется в кислый тиролиберин» а затем в дипептид — гистидин-пролинамид, который подвергается нсферментативной циклизации с образованием гистидилпролин дикетопиперазина (циклического гистидил Пронина). Показано, что циклический гистидил пролин обладает свойствами пролактолиберина и оказывает дополнительные влияния на ЦНС через повышение уровня цГМФ, что проявляется угнетением аппетита, изменением температуры тела и др. Скорость инактивации тиролиберина в плазме животных увеличивается на фоне предварительного введения трийодтиронина, Тиролиберин накапливается в печени, почках и гипофизе. Период его полураспада составляет около 3—4 мин. У больных, задающих тиреотоксикозом, период полураспада тиролиберина крови составляет 2 мин, а у больных, страдающих гипотиреозом, коло 6 мин. При снижении функции печени или почек клиренс тиролиберина уменьшается. Несмотря на быструю инактивацию, низкие концентрации тиролиберина определяются в периферической крови.
Опыт клинического применения тиролиберина показал, что введение уже в течение первых 5 мин стимулирует высвобождение ТТГ в кровь и последующее повышение уровня тиреоидных монов. Кроме специфического влияния на ТТГ, тиролиберин увеличивает уровень пролактина в сыворотке крови, проявляя свойства пролактолиберина. Несмотря на многочисленные исследования, окончательного мнения о том, что тиролиберин является физиологическим пролактолиберином, нет. Если порог чувствительности к стимулирующему влиянию тиролиберина на секрецию ТТГ и пролактина одинаков, то акт сосания, стимуляция молочной железы, а также стресс увеличивают содержание пролактина в крови, оставляя интактной концентрацию ТТГ. Более того, циркадный ритм секреции ТТГ и пролактина также не совпадает. На секрецию гормона роста у здоровых людей тиролиберин не влияет, в то время как у больных акромегалией под его влиянием происходит дальнейшее повышение уровня СТГ в сыворотке крови. Это изменение чувствительности к тиролиберину у больных акромегалией, имеющих, как известно, аденому гипофиза, настолько специфично, что проба с ним используется для диагностики и дифференциальной диагностики этого заболевания, а также для оценки эффективности лечения акромегалии. Тиролиберин применяется также для оценки резервов ТТГ и пролактина в гипофизе и дифференциальной диагностики вторичного и третичного гипотиреоза.

При диффузном токсическом зобе уровень ТТГ в сыворотке крови снижен и не изменяется после введения тиролиберина. Кроме того, тиролиберин применяется в неврологической практике. Имеется достаточное количество работ о его положительном влиянии при амиотрофическом латеральном склерозе, дегенерации мозжечка, психической депрессии. Особый интерес представляют работы последних лет, в которых показано положительное влияние Тиролиберина в лечении респираторного дистресс-синдрома у новорожденных. Патогенез этого синдрома связан с недостаточным созреванием сурфактантной системы легких, наблюдаемым у недоношенных новорожденных. Назначение тиролиберина или его сочетание с глюкокортикоидами достоверно улучшает отношение лецитин/сфингомиэлин в амниотической жидкости, которое является индексом созревания легочной ткани плода.


Оцените статью: (12 голосов)
3.92 5 12
2007-2017 © Copyright ООО «МЕДКАРТА». Все права на материалы, находящиеся на сайте medkarta.com,
охраняются в соответствии с законодательством РФ, в том числе, об авторском праве и смежных правах.